Targeted localized degradation of Paired protein in Drosophila development
نویسندگان
چکیده
BACKGROUND Selective spatial regulation of gene expression lies at the core of pattern formation in the embryo. In the fruit fly Drosophila, localized transcriptional regulation accounts for much of the embryonic pattern. RESULTS We identified a gene, partner of paired (ppa), whose properties suggest that localized receptors for protein degradation are integrated into regulatory networks of transcription factors to ensure robust spatial regulation of gene expression. We found that the Ppa protein interacts with the Pax transcription factor Paired (Prd) and contains an F-box, a motif found in receptors for ubiquitin-mediated protein degradation. In normal development, Prd functions only in cells in which ppa mRNA expression has been repressed by another segmentation protein, Even-skipped (Eve). When ppa was expressed ectopically in these cells, Prd protein, but not mRNA, levels diminished. When ppa function was removed from cells that express prd mRNA, Prd protein levels increased. CONCLUSIONS Ppa co-ordinates Prd degradation and is important for expression of Prd to be correctly localized. In the presence of Ppa, Prd protein is targeted for degradation at sites where its mis-expression would disrupt development. In the absence of Ppa, Prd is longer-lived and regulates downstream target genes.
منابع مشابه
Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila
In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...
متن کاملTargeted ribozymes reveal a conserved function of the Drosophila paired gene in sensory organ development
The Drosophila paired (prd) gene, the founding member of the PAX gene family, is required for normal embryonic segmentation and is re-expressed later in development in the head and developing CNS. As for most embryonically active genes, global defects resulting from loss of early prd function obscure an analysis of the role of later expression phases. We used inducible targeted ribozymes to fun...
متن کاملTargeted Degradation of Proteins Localized in Subcellular Compartments by Hybrid Small Molecules.
Development of novel small molecules that selectively degrade pathogenic proteins would provide an important advance in targeted therapy. Recently, we have devised a series of hybrid small molecules named SNIPER (specific and nongenetic IAP-dependent protein ERaser) that induces the degradation of target proteins via the ubiquitin-proteasome system. To understand the localization of proteins th...
متن کاملRNA localization in development.
Cytoplasmic RNA localization is an evolutionarily ancient mechanism for producing cellular asymmetries. This review considers RNA localization in the context of animal development. Both mRNAs and non-protein-coding RNAs are localized in Drosophila, Xenopus, ascidian, zebrafish, and echinoderm oocytes and embryos, as well as in a variety of developing and differentiated polarized cells from yeas...
متن کاملPINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
Loss-of-function mutations in PINK1, which encodes a mitochondrially targeted serine/threonine kinase, result in an early-onset heritable form of Parkinson's disease. Previous work has shown that PINK1 is constitutively degraded in healthy cells, but selectively accumulates on the surface of depolarized mitochondria, thereby initiating their autophagic degradation. Although PINK1 is known to be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 10 شماره
صفحات -
تاریخ انتشار 2000